Leadville, Biomass, and Hydrogen Energy

Andrew M. Herring
Department of Chemical Engineering
Colorado School of Mines
Golden, Colorado

Leadville Energy Today

Needs

- Jobs
- Super Fund Clean up
- Forest Fire Mitigation

Renewable Hydrogen Energy

Healthy Forest Initiative

- Federal program to encourage forest thinning in fire prone red-zone
- Most biomass to be removed will be small diameter trees
- Need to develop a market/use for wood chips
- Transportation costs significant for this "waste" biomass stream

Wood Chip Fired CHP

- Wood chips transported to central location
- Used to fire boiler
- Hot water or steam piped through district heating system
- Possibility of using steam to produce electricity in steam micro-turbine

Biomass Gasification

- Partial combustion of biomass with air
- Produces a gas 20 % H₂, 20 % CO, 2 % CH₄, 42 % N₂, 8 % CO₂, 8 % H₂O
- Can be used directly in an engine genset, microturbine or solid oxide fuel cell

Pyrolysis Oil

- Fast pyrolysis rapidly heat biomass in absence of air to produce oil, gas and char.

 Gas and char combusted to dry wood.
- Wood 50 % water, Oil 20 % water and higher calorific value
- "Concentrated biomass" less expensive to transport

In Forest Pyrolysis Reactor

Carbon Products for the Mining Industry

- Carbon absorbents for mitigation of acid mine waste
- High quality carbon for use in gold refining as a cost effective alternative to coconut shell carbon

Reforming

Depending on the application some fuel processing is necessary

H₂ 2010 DOE Cost Targets

- Via Pyrolysis \$2.90 Kg/H₂
 - ◆ Feedstock 70c
 - ◆ Pyrolysis \$1.50
 - ◆ Reforming 40c
 - ◆ Purification 30c
- Via Gasification \$2.50 Kg/H₂
- Via Natural Gas \$1.50 Kg/H₂
 - ◆ Feedstock 58c
- Via wind/PV electrolysis \$2.00 Kg/H₂

Uses of H₂

- Major Chemical Feedstock, NH₃, MeOH, hydrogenated oils, Metals reduction
- H₂ engines, low but not zero emissions
- H₂ fired power generation
- H₂ co-fed with natural gas to microturbine or modified combustion engine

Fuel Cells

- Converts fuel (H₂) and oxidant (air) into electric power and heat continuously
- More efficient than a conventional heat combustion engine
- Only emission is H₂O for low temperature FC, and CO₂ for high temperature fuel cell at point of use.

PEMFC Schematic

<u>Anode</u>

 $H_2 \rightarrow 2H^+ + 2e^-$

Fuel Cell Stack

- A single cell will operate at 0.6 V, so a stack of cells in series is needed for useful current
- Additional components such as bipolar plates or interconnects and seals are needed

Phosphoric Acid Fuel Cells

Barrow USPS Alaska

- Mature Technology at 250 kW
- Electrical efficiency 85%
- Operating temperature 165°C tolerates 1-2 % CO
- Low power density 250 mA cm⁻² large footprint
- Phosphoric acid leaches, deactivates Pt catalyst, Pt catalyst sinters – Requires refurbishment every 40, 000 h
- Carbon catalyst support combusts on fuel outage – requires N₂ for start up/shut down

Solid Oxide Fuel Cell

- Technology in Development <5 kW –</p>
 <1 MW
- Electrical efficiency 50%
- Operating temperature 1000 °C CO is a fuel
- Ceramic construction of MEA anode supported for structural stability
- High Temperature component thermal expansion mismatch, long start up time, 8 h
- Fuel versatile low cost catalysts to avoid coking or internal steam reforming

Proton Exchange Membrane Fuel Cell

- Mature Technology for NASA in development for terrestrial applications
- Electrical efficiency >85%
- High power density >1 A cm⁻² large range of applications
- Operating temperature limited to 80 °C – current membranes must be hydrated
- Expensive Pt catalyst— poor CO tolerance, Pt leaching when cycled
- Polymer membrane susceptible to degradation, leading to corrosion of metal bipolar plate

Long Island Power Authority, NY

PEM Fuel Cell Research

- Raise temperature of operation to 120-200 °C
 - ◆ Allows use of existing heat exchange hardware in vehicles and production of useful steam for stationary CHP.
- Improved electro-catalysts
 - ◆ CO tolerant anode
 - ◆ Improved kinetic of oxygen reduction at cathode – less Pt and OH radical.

H₂ from Biomass, areas of concern

- Anode tolerance to small reactive molecules
- Ammonia poisoning of electrolyte
- Silica deposition

Fuel Cell Cost Targets

Automotive, pure H₂

	2003	2005	2010
Cost \$/kW	200 - 2000	125	45
Durability, h	1000	2000	5000
T of operation, °C	80	120	120

Stationary, including fuel processor

	2003	2005	2010
Cost \$/kW	3000	1500	1000
Durability, h	>6,000	30,000	40,000
T of operation, °C	160	120-160	120-180

Partners

Leadville Institute of Science and Technology

Colorado School of Mines

- National Renewable Energy Laboratory
- Bio Energy Corporation

Community Power Corporation

Colorado Governors Office of Energy Management and Conservation

